[Home] . . . Search by [Problem] [Package] [Name or Keyword] . . . [Math at NIST]

Problem Taxonomy

Classes

GAMSClassification Scheme
  AArithmetic, error analysis
    A1Integer
    A2Rational
    A3Real
      A3aStandard precision
      A3cExtended precision
      A3dExtended range
    A4Complex
      A4aStandard precision
      A4cExtended precision
      A4dExtended range
    A5Interval
    A6Change of representation
      A6aType conversion
      A6bBase conversion
      A6cDecomposition, construction
    A7Sequences (e.g., convergence acceleration)
  BNumber theory
  CElementary and special functions
    C1Integer-valued functions (e.g., factorial, binomial coefficient, permutations, combinations, floor, ceiling)
    C2Powers, roots, reciprocals
    C3Polynomials
      C3aOrthogonal
        C3a1Trigonometric
        C3a2Chebyshev, Legendre
        C3a3Laguerre
        C3a4Hermite
      C3bNon-orthogonal
    C4Elementary transcendental functions
      C4aTrigonometric, inverse trigonometric
      C4bExponential, logarithmic
      C4cHyperbolic, inverse hyperbolic
      C4dIntegrals of elementary transcendental functions
    C5Exponential and logarithmic integrals
    C6Cosine and sine integrals
    C7Gamma
      C7aGamma, log gamma, reciprocal gamma
      C7bBeta, log beta
      C7cPsi function
      C7dPolygamma function
      C7eIncomplete gamma
      C7fIncomplete beta
      C7gRiemann zeta
    C8Error functions
      C8aError functions, their inverses, integrals, including the normal distribution function
      C8bFresnel integrals
      C8cDawson''s integral
    C9Legendre functions
    C10Bessel functions
      C10aJ, Y, H-(1), H-(2)
        C10a1Real argument, integer order
        C10a2Complex argument, integer order
        C10a3Real argument, real order
        C10a4Complex argument, real order
        C10a5Complex argument, complex order
      C10bI, K
        C10b1Real argument, integer order
        C10b2Complex argument, integer order
        C10b3Real argument, real order
        C10b4Complex argument, real order
        C10b5Complex argument, complex order
      C10cKelvin functions
      C10dAiry and Scorer functions
      C10eStruve, Anger, and Weber functions
      C10fIntegrals of Bessel functions
    C11Confluent hypergeometric functions
    C12Coulomb wave functions
    C13Jacobian elliptic functions, theta functions
    C14Elliptic integrals
    C15Weierstrass elliptic functions
    C16Parabolic cylinder functions
    C17Mathieu functions
    C18Spheroidal wave functions
    C19Other special functions
  DLinear Algebra
    D1Elementary vector and matrix operations
      D1aElementary vector operations
        D1a1Set to constant
        D1a2Minimum and maximum components
        D1a3Norm
          D1a3aL-1 (sum of magnitudes)
          D1a3bL-2 (Euclidean norm)
          D1a3cL-infinity (maximum magnitude)
        D1a4Dot product (inner product)
        D1a5Copy or exchange (swap)
        D1a6Multiplication by scalar
        D1a7Triad (a*x+y for vectors x,y and scalar a)
        D1a8Elementary rotation (Givens transformation)
        D1a9Elementary reflection (Householder transformation)
        D1a10Convolutions
        D1a11Other vector operations
      D1bElementary matrix operations
        D1b1Initialize (e.g., to zero or identity)
        D1b2Norm
        D1b3Transpose
        D1b4Multiplication by vector
        D1b5Addition, subtraction
        D1b6Multiplication
        D1b7Matrix polynomial
        D1b8Copy
        D1b9Storage mode conversion
        D1b10Elementary rotation (Givens transformation)
        D1b11Elementary reflection (Householder transformation)
    D2Solution of systems of linear equations (including inversion, LU and related decompositions)
      D2aReal nonsymmetric matrices
        D2a1General
        D2a2Banded
          D2a2aTridiagonal
        D2a3Triangular
        D2a4Sparse
      D2bReal symmetric matrices
        D2b1General
          D2b1aIndefinite
          D2b1bPositive definite
        D2b2Positive definite banded
          D2b2aTridiagonal
        D2b4Sparse
      D2cComplex non-Hermitian matrices
        D2c1General
        D2c2Banded
          D2c2aTridiagonal
        D2c3Triangular
        D2c4Sparse
      D2dComplex Hermitian matrices
        D2d1General
          D2d1aIndefinite
          D2d1bPositive definite
        D2d2Positive definite banded
          D2d2aTridiagonal
        D2d4Sparse
      D2eAssociated operations (e.g., matrix reorderings)
    D3Determinants
      D3aReal nonsymmetric matrices
        D3a1General
        D3a2Banded
          D3a2aTridiagonal
        D3a3Triangular
        D3a4Sparse
      D3bReal symmetric matrices
        D3b1General
          D3b1aIndefinite
          D3b1bPositive definite
        D3b2Positive definite banded
          D3b2aTridiagonal
        D3b4Sparse
      D3cComplex non-Hermitian matrices
        D3c1General
        D3c2Banded
          D3c2aTridiagonal
        D3c3Triangular
        D3c4Sparse
      D3dComplex Hermitian matrices
        D3d1General
          D3d1aIndefinite
          D3d1bPositive definite
        D3d2Positive definite banded
          D3d2aTridiagonal
        D3d4Sparse
    D4Eigenvalues, eigenvectors
      D4aOrdinary eigenvalue problems (Ax = (lambda) * x)
        D4a1Real symmetric
        D4a2Real nonsymmetric
        D4a3Complex Hermitian
        D4a4Complex non-Hermitian
        D4a5Tridiagonal
        D4a6Banded
        D4a7Sparse
      D4bGeneralized eigenvalue problems (e.g., Ax = (lambda)*Bx)
        D4b1Real symmetric
        D4b2Real general
        D4b3Complex Hermitian
        D4b4Complex general
        D4b5Banded
      D4cAssociated operations
        D4c1Transform problem
          D4c1aBalance matrix
          D4c1bReduce to compact form
            D4c1b1Tridiagonal
            D4c1b2Hessenberg
            D4c1b3Other
          D4c1cStandardize problem
        D4c2Compute eigenvalues of matrix in compact form
          D4c2aTridiagonal
          D4c2bHessenberg
          D4c2cOther
        D4c3Form eigenvectors from eigenvalues
        D4c4Back transform eigenvectors
        D4c5Determine Jordan normal form
    D5QR decomposition, Gram-Schmidt orthogonalization
    D6Singular value decomposition
    D7Update matrix decompositions
      D7aLU
      D7bCholesky
      D7cQR
      D7dSingular value
    D8Other matrix equations (e.g., AX+XB=C)
    D9Singular, overdetermined or underdetermined systems of linear equations, generalized inverses
      D9aUnconstrained
        D9a1Least squares (L-2) solution
        D9a2Chebyshev (L-infinity) solution
        D9a3Least absolute value (L-1) solution
        D9a4Other
      D9bConstrained
        D9b1Least squares (L-2) solution
        D9b2Chebyshev (L-infinity) solution
        D9b3Least absolute value (L-1)
        D9b4Other
      D9cGeneralized inverses
  EInterpolation
    E1Univariate data (curve fitting)
      E1aPolynomial splines (piecewise polynomials)
      E1bPolynomials
      E1cOther functions (e.g., rational, trigonometric)
    E2Multivariate data (surface fitting)
      E2aGridded
      E2bScattered
    E3Service routines for interpolation
      E3aEvaluation of fitted functions, including quadrature
        E3a1Function evaluation
        E3a2Derivative evaluation
        E3a3Quadrature
      E3bGrid or knot generation
      E3cManipulation of basis functions (e.g., evaluation, change of basis)
      E3dOther
  FSolution of nonlinear equations
    F1Single equation
      F1aPolynomial
        F1a1Real coefficients
        F1a2Complex coefficients
      F1bNonpolynomial
    F2System of equations
    F3Service routines (e.g., check user-supplied derivatives)
  GOptimization
    G1Unconstrained
      G1aUnivariate
        G1a1Smooth function
          G1a1aUser provides no derivatives
          G1a1bUser provides first derivatives
          G1a1cUser provides first and second derivatives
        G1a2General function (no smoothness assumed)
      G1bMultivariate
        G1b1Smooth function
          G1b1aUser provides no derivatives
          G1b1bUser provides first derivatives
          G1b1cUser provides first and second derivatives
        G1b2General function (no smoothness assumed)
    G2Constrained
      G2aLinear programming
        G2a1Dense matrix of constraints
        G2a2Sparse matrix of constraints
      G2bTransportation and assignments problem
      G2cInteger programming
        G2c1Zero/one
        G2c2Covering and packing problems
        G2c3Knapsack problems
        G2c4Matching problems
        G2c5Routing, scheduling, location problems
        G2c6Pure integer programming
        G2c7Mixed integer programming
      G2dNetwork
        G2d1Shortest path
        G2d2Minimum spanning tree
        G2d3Maximum flow
          G2d3aGeneralized networks
          G2d3bNetworks with side constraints
        G2d4Test problem generation
      G2eQuadratic programming
        G2e1Positive definite Hessian (i.e., convex problem)
        G2e2Indefinite Hessian
      G2fGeometric programming
      G2gDynamic programming
      G2hGeneral nonlinear programming
        G2h1Simple bounds
          G2h1aSmooth function
            G2h1a1User provides no derivatives
            G2h1a2User provides first derivatives
            G2h1a3User provides first and second derivatives
          G2h1bGeneral function (no smoothness assumed)
        G2h2Linear equality or inequality constraints
          G2h2aSmooth function
            G2h2a1User provides no derivatives
            G2h2a2User provides first derivatives
            G2h2a3User provides first and second derivatives
          G2h2bGeneral function (no smoothness assumed)
        G2h3Nonlinear constraints
          G2h3aEquality constraints only
            G2h3a1Smooth function and constraints
              G2h3a1aUser provides no derivatives
              G2h3a1bUser provides first derivatives of function and constraints
              G2h3a1cUser provides first and second derivatives of function and constraints
            G2h3a2General function and constraints (no smoothness assumed)
          G2h3bEquality and inequality constraints
            G2h3b1Smooth function and constraints
              G2h3b1aUser provides no derivatives
              G2h3b1bUser provides first derivatives of function and constraints
              G2h3b1cUser provides first and second derivatives of function and constraints
            G2h3b2General function and constraints (no smoothness assumed)
      G2iGlobal solution to nonconvex problems
    G3Optimal control
    G4Service routines
      G4aProblem input (e.g., matrix generation)
      G4bProblem scaling
      G4cCheck user-supplied derivatives
      G4dFind feasible point
      G4eCheck for redundancy
      G4fOther
  HDifferentiation, integration
    H1Numerical differentiation
    H2Quadrature (numerical evaluation of definite integrals)
      H2aOne-dimensional integrals
        H2a1Finite interval (general integrand)
          H2a1aIntegrand available via user-defined procedure
            H2a1a1Automatic (user need only specify required accuracy)
            H2a1a2Nonautomatic
          H2a1bIntegrand available only on grid
            H2a1b1Automatic (user need only specify required accuracy)
            H2a1b2Nonautomatic
        H2a2Finite interval (specific or special type integrand including weight functions, oscillating and singular integrands, principal value integrals, splines, etc.)
          H2a2aIntegrand available via user-defined procedure
            H2a2a1Automatic (user need only specify required accuracy)
            H2a2a2Nonautomatic
          H2a2bIntegrand available only on grid
            H2a2b1Automatic (user need only specify required accuracy)
            H2a2b2Nonautomatic
        H2a3Semi-infinite interval (including exp(-x) weight function)
          H2a3aIntegrand available via user-defined procedure
            H2a3a1Automatic (user need only specify required accuracy)
            H2a3a2Nonautomatic
        H2a4Infinite interval (including exp(-x**2) weight function)
          H2a4aIntegrand available via user-defined procedure
            H2a4a1Automatic (user need only specify required accuracy)
            H2a4a2Nonautomatic
      H2bMultidimensional integrals
        H2b1One or more hyper-rectangular regions (includes iterated integrals)
          H2b1aIntegrand available via user-defined procedure
            H2b1a1Automatic (user need only specify required accuracy)
            H2b1a2Nonautomatic
          H2b1bIntegrand available only on grid
            H2b1b1Automatic (user need only specify required accuracy)
            H2b1b2Nonautomatic
        H2b2n-dimensional quadrature on a nonrectangular region
          H2b2aIntegrand available via user-defined procedure
            H2b2a1Automatic (user need only specify required accuracy)
            H2b2a2Nonautomatic
          H2b2bIntegrand available only on grid
            H2b2b1Automatic (user need only specify required accuracy)
            H2b2b2Nonautomatic
      H2cService routines (e.g., compute weights and nodes for quadrature formulas)
  IDifferential and integral equations
    I1Ordinary differential equations (ODE''s)
      I1aInitial value problems
        I1a1General, nonstiff or mildly stiff
          I1a1aOne-step methods (e.g., Runge-Kutta)
          I1a1bMultistep methods (e.g., Adams predictor-corrector)
          I1a1cExtrapolation methods (e.g., Bulirsch-Stoer)
        I1a2Stiff and mixed algebraic- differential equations
      I1bMultipoint boundary value problems
        I1b1Linear
        I1b2Nonlinear
        I1b3Eigenvalue (e.g., Sturm-Liouville)
      I1cService routines (e.g., interpolation of solutions, error handling, test programs)
    I2Partial differential equations
      I2aInitial boundary value problems
        I2a1Parabolic
          I2a1aOne spatial dimension
          I2a1bTwo or more spatial dimensions
        I2a2Hyperbolic
      I2bElliptic boundary value problems
        I2b1Linear
          I2b1aSecond order
            I2b1a1Poisson (Laplace) or Helmholtz equation
              I2b1a1aRectangular domain (or topologically rectangular in the coordinate system)
              I2b1a1bNonrectangular domain
            I2b1a2Other separable problems
            I2b1a3Nonseparable problems
          I2b1cHigher order equations (e.g., biharmonic)
        I2b2Nonlinear
        I2b3Eigenvalue
        I2b4Service routines
          I2b4aDomain triangulation
          I2b4bSolution of discretized elliptic equations
    I3Integral equations
  JIntegral transforms
    J1Trigonometric transforms including fast Fourier transforms
      J1aOne-dimensional
        J1a1Real
        J1a2Complex
        J1a3Sine and cosine transforms
      J1bMultidimensional
    J2Convolutions
    J3Laplace transforms
    J4Hilbert transforms
  KApproximation
    K1Least squares (L-2) approximation
      K1aLinear least squares
        K1a1Unconstrained
          K1a1aUnivariate data (curve fitting)
            K1a1a1Polynomial splines (piecewise polynomials)
            K1a1a2Polynomials
            K1a1a3Other functions (e.g., trigonometric, user-specified)
          K1a1bMultivariate data (surface fitting)
        K1a2Constrained
          K1a2aLinear constraints
          K1a2bNonlinear constraints
      K1bNonlinear least squares
        K1b1Unconstrained
          K1b1aSmooth functions
            K1b1a1User provides no derivatives
            K1b1a2User provides first derivatives
            K1b1a3User provides first and second derivatives
          K1b1bGeneral functions
        K1b2Constrained
          K1b2aLinear constraints
          K1b2bNonlinear constraints
    K2Minimax (L-infinity) approximation
    K3Least absolute value (L-1) approximation
    K4Other analytic approximations (e.g., Taylor polynomial, Pade)
    K5Smoothing
    K6Service routines for approximation
      K6aEvaluation of fitted functions, including quadrature
        K6a1Function evaluation
        K6a2Derivative evaluation
        K6a3Quadrature
      K6bGrid or knot generation
      K6cManipulation of basis functions (e.g., evaluation, change of basis)
      K6dOther
  LStatistics, probability
    L1Data summarization
      L1aOne-dimensional data
        L1a1Raw data
          L1a1aLocation
          L1a1bDispersion
          L1a1cShape
          L1a1dFrequency, cumulative frequency
          L1a1eTies
        L1a3Grouped data
      L1bTwo dimensional data
      L1cMulti-dimensional data
        L1c1Raw data
          L1c1bCovariance, correlation
          L1c1dFrequency, cumulative frequency
        L1c2Raw data containing missing values
    L2Data manipulation
      L2aTransform
      L2bTally
      L2cSubset
      L2dMerge
      L2eConstruct new variables (e.g., indicator variables)
    L3Elementary statistical graphics
      L3aOne-dimensional data
        L3a1Histograms
        L3a2Frequency, cumulative frequency, percentile plots
        L3a3EDA (e.g., box-plots)
        L3a4Bar charts
        L3a5Pie charts
        L3a6X(i) vs. i (including symbol plots)
        L3a7Lag plots (e.g., plots of X(i) vs. X(i-1))
      L3bTwo-dimensional data
        L3b1Histograms (superimposed and bivariate)
        L3b2Frequency, cumulative frequency
        L3b3Scatter diagrams
          L3b3aY vs. X
          L3b3bSymbol plots
          L3b3cLag plots (i.e., plots of X(i) vs. Y(i-j))
        L3b4EDA
      L3cThree-dimensional data
      L3eMulti-dimensional data
        L3e1Histograms
        L3e2Frequency, cumulative frequency, percentile plots
        L3e3Scatter diagrams
          L3e3aSuperimposed Y vs. X
          L3e3cSuperimposed X(i) vs. i
          L3e3dMatrices of bivariate scatter diagrams
        L3e4EDA
    L4Elementary data analysis
      L4aOne-dimensional data
        L4a1Raw data
          L4a1aParametric analysis
            L4a1a1Plots of empirical and theoretical density and distribution functions
            L4a1a2Probability plots
              L4a1a2bBeta, binomial
              L4a1a2cCauchy, chi-squared
              L4a1a2dDouble exponential
              L4a1a2eExponential, extreme value
              L4a1a2fF distribution
              L4a1a2gGamma, geometric
              L4a1a2hHalfnormal
              L4a1a2lLambda, logistic, lognormal
              L4a1a2nNegative binomial, normal
              L4a1a2pPareto, Poisson
              L4a1a2sSemicircular
              L4a1a2tt distribution, triangular
              L4a1a2uUniform
              L4a1a2wWeibull
            L4a1a3Probability plot correlation coefficient plots
              L4a1a3cChi-squared
              L4a1a3eExtreme value
              L4a1a3gGamma, geometric
              L4a1a3lLambda
              L4a1a3nNormal
              L4a1a3pPareto, Poisson
              L4a1a3tt distribution
              L4a1a3wWeibull
            L4a1a4Parameter estimates and tests
              L4a1a4bBinomial
              L4a1a4eExtreme value
              L4a1a4nNormal
              L4a1a4pPoisson
              L4a1a4uUniform
              L4a1a4wWeibull
            L4a1a5Transformation selection (e.g., for normality)
            L4a1a6Tail and outlier analysis
            L4a1a7Tolerance limits
          L4a1bNonparametric analysis
            L4a1b1Estimates and tests regarding location (e.g., median), dispersion, and shape
            L4a1b2Density function estimation
          L4a1cGoodness-of-fit tests
          L4a1dAnalysis of a sequence of numbers
        L4a3Grouped and/or censored data
        L4a4Data sampled from a finite population
        L4a5Categorical data
      L4bTwo dimensional data
        L4b1Pairwise independent data
          L4b1aParametric analysis
            L4b1a1Plots of empirical and theoretical density and distribution functions
            L4b1a4Parameter estimates and hypothesis tests
          L4b1bNonparametric analysis (e.g., rank tests)
          L4b1cGoodness-of-fit tests
        L4b3Pairwise dependent data
        L4b4Pairwise dependent grouped data
        L4b5Data sampled from a finite population
      L4cMulti-dimensional data
        L4c1Independent data
          L4c1aParametric analysis
          L4c1bNonparametric analysis
      L4eMultiple multi-dimensional data sets
    L5Function evaluation
      L5aUnivariate
        L5a1Cumulative distribution functions, probability density functions
          L5a1bBeta, binomial
          L5a1cCauchy, chi-squared
          L5a1dDouble exponential
          L5a1eError function, exponential, extreme value
          L5a1fF distribution
          L5a1gGamma, general, geometric
          L5a1hHalfnormal, hypergeometric
          L5a1kKendall F statistic, Kolmogorov-Smirnov
          L5a1lLambda, logistic, lognormal
          L5a1nNegative binomial, normal
          L5a1pPareto, Poisson
          L5a1tt distribution
          L5a1uUniform
          L5a1vVon Mises
          L5a1wWeibull
        L5a2Inverse distribution functions, sparsity functions
          L5a2bBeta, binomial
          L5a2cCauchy, chi-squared
          L5a2dDouble exponential
          L5a2eError function, exponential, extreme value
          L5a2fF distribution
          L5a2gGamma, general, geometric
          L5a2hHalfnormal
          L5a2lLambda, logistic, lognormal
          L5a2nNegative binomial, normal, normal order statistics
          L5a2pPareto, Poisson
          L5a2tt distribution
          L5a2uUniform
          L5a2wWeibull
      L5bMultivariate
        L5b1Cumulative multivariate distribution functions, probability density functions
          L5b1nNormal
        L5b2Inverse cumulative distribution functions
          L5b2nNormal
    L6Random number generation
      L6aUnivariate
        L6a2Beta, binomial, Boolean
        L6a3Cauchy, chi-squared
        L6a4Double exponential
        L6a5Exponential, extreme value
        L6a6F distribution
        L6a7Gamma, general (continuous, discrete), geometric
        L6a8Halfnormal, hypergeometric
        L6a12Lambda, logistic, lognormal
        L6a14Negative binomial, normal, normal order statistics
        L6a16Pareto, Pascal, permutations, Poisson
        L6a19Samples, stable distribution
        L6a20t distribution, time series, triangular
        L6a21Uniform (continuous, discrete), uniform order statistics
        L6a22Von Mises
        L6a23Weibull
      L6bMultivariate
        L6b3Contingency table, correlation matrix
        L6b5Experimental designs
        L6b12Linear L-1 (least absolute value) approximation
        L6b13Multinomial
        L6b14Normal
        L6b15Orthogonal matrix
        L6b21Uniform
      L6cService routines (e.g., seed)
    L7Analysis of variance (including analysis of covariance)
      L7aOne-way
        L7a1Parametric
        L7a2Nonparametric
      L7bTwo-way
      L7cThree-way (e.g., Latin squares)
      L7dMulti-way
        L7d1Balanced complete data (e.g., factorial designs)
        L7d2Balanced incomplete data
        L7d3General linear models (unbalanced data)
      L7eMultivariate
      L7fGenerate experimental designs
      L7gService routines
    L8Regression
      L8aSimple linear (i.e., y = b(0) + b(1)*x)
        L8a1Ordinary least squares
          L8a1aParameter estimation
            L8a1a1Unweighted data
            L8a1a2Weighted data
          L8a1dInference (e.g., calibration)
        L8a2L-p for p different from 2 (e.g., least absolute value, minimax)
        L8a3Robust
        L8a4Errors in variables
      L8bPolynomial (e.g., y = b(0) + b(1)*x + b(2)*x**2)
        L8b1Ordinary least squares
          L8b1aDegree determination
          L8b1bParameter estimation
            L8b1b1Not using orthogonal polynomials
            L8b1b2Using orthogonal polynomials
          L8b1cAnalysis
          L8b1dInference
      L8cMultiple linear (i.e., y = b(0) + b(1)*x(1) + ... + b(p)*x(p))
        L8c1Ordinary least squares
          L8c1aVariable selection
            L8c1a1Using raw data
            L8c1a2Using correlation or covariance data
            L8c1a3Using other data
          L8c1bParameter estimation
            L8c1b1Using raw data
            L8c1b2Using correlation data
          L8c1cAnalysis
          L8c1dInference
        L8c2Several regressions
        L8c3L-p for p different from 2
        L8c4Robust
        L8c5Measurement error models
        L8c6Models based on ranks
      L8dPolynomial in several variables
      L8eNonlinear (i.e., y = F(X,b))
        L8e1Ordinary least squares
          L8e1aVariable selection
          L8e1bParameter estimation
            L8e1b1Unweighted data, user provides no derivatives
            L8e1b2Unweighted data, user provides derivatives
            L8e1b3Weighted data, user provides no derivatives
            L8e1b4Weighted data, user provides derivatives
        L8e2Ridge
        L8e5Measurement error models
      L8fSimultaneous (i.e., Y = Xb)
      L8gSpline (i.e., piecewise polynomial)
      L8hEDA (e.g., smoothing)
      L8iService routines (e.g., matrix manipulation for variable selection)
    L9Categorical data analysis
      L9a2-by-2 tables
      L9bTwo-way tables
      L9cLog-linear model
      L9dEDA (e.g., median polish)
    L10Time series analysis
      L10aUnivariate
        L10a1Transformations
          L10a1aElementary
          L10a1bStationarity
          L10a1cFilters
            L10a1c1Difference
            L10a1c2Symmetric linear (e.g., moving averages)
            L10a1c3Autoregressive linear
            L10a1c4Other
          L10a1dTaper
        L10a2Time domain analysis
          L10a2aSummary statistics
            L10a2a1Autocorrelations and autocovariances
            L10a2a2Partial autocorrelations
          L10a2bStationarity analysis
          L10a2cAutoregressive models
            L10a2c1Model identification
            L10a2c2Parameter estimation
          L10a2dARMA and ARIMA models (including Box-Jenkins methods)
            L10a2d1Model identification
            L10a2d2Parameter estimation
            L10a2d3Forecasting
          L10a2eState-space analysis (e.g., Kalman filtering)
          L10a2fAnalysis of a locally stationary series
        L10a3Frequency domain analysis
          L10a3aSpectral analysis
            L10a3a1Pilot analysis
            L10a3a2Periodogram analysis
            L10a3a3Spectrum estimation using the periodogram
            L10a3a4Spectrum estimation using the Fourier transform of the autocorrelation function
            L10a3a5Spectrum estimation using autoregressive models
            L10a3a6Spectral windows
          L10a3bComplex demodulation
      L10bTwo time series
        L10b2Time domain analysis
          L10b2aSummary statistics (e.g., cross-correlations)
          L10b2bTransfer function models
        L10b3Frequency domain analysis
          L10b3aCross-spectral analysis
            L10b3a2Cross-periodogram analysis
            L10b3a3Cross-spectrum estimation using the cross-periodogram
            L10b3a4Cross-spectrum estimation using the Fourier transform of the cross-correlation or cross-covariance function
            L10b3a6Spectral functions
      L10cMultivariate time series
      L10dTwo multi-channel time series
    L11Correlation analysis
    L12Discriminant analysis
    L13Covariance structure models
      L13aFactor analysis
      L13bPrincipal components analysis
      L13cCanonical correlation
    L14Cluster analysis
      L14aOne-way
        L14a1Unconstrained
          L14a1aNested
            L14a1a1Joining (e.g., single link)
            L14a1a2Divisive
            L14a1a3Switching
            L14a1a4Predict missing values
          L14a1bNon-nested (e.g., K means)
        L14a2Constrained
      L14bTwo-way
      L14cDisplay
      L14dService routines (e.g., compute distance matrix)
    L15Life testing, survival analysis
    L16Multidimensional scaling
    L17Statistical data sets
  MSimulation, stochastic modeling
    M1Simulation
      M1aDiscrete
      M1bContinuous (Markov models)
    M2Queueing
    M3Reliability
      M3aQuality control
      M3bElectrical network
    M4Project optimization (e.g., PERT)
  NData handling
    N1Input, output
    N2Bit manipulation
    N3Character manipulation
    N4Storage management (e.g., stacks, heaps, trees)
    N5Searching
      N5aExtreme value
      N5bInsertion position
      N5cOn a key
    N6Sorting
      N6aInternal
        N6a1Passive (i.e. construct pointer array, rank)
          N6a1aInteger
          N6a1bReal
          N6a1cCharacter
        N6a2Active
          N6a2aInteger
          N6a2bReal
          N6a2cCharacter
      N6bExternal
    N7Merging
    N8Permuting
  OSymbolic computation
  PComputational geometry
  QGraphics
  RService routines
    R1Machine-dependent constants
    R2Error checking (e.g., check monotonicity)
    R3Error handling
      R3aSet criteria for fatal errors
      R3bSet unit number for error messages
      R3cOther utilities
    R4Documentation retrieval
  SSoftware development tools
    S1Program transformation tools
    S2Static program analysis tools
    S3Dynamic program analysis tools
  ZOther
UnclassifiedUnclassified
Comments? gams@nist.gov